Evolutionary learning of fuzzy rules in a modified classifier system for mobile agents control
نویسندگان
چکیده
In this work we present the creation of a platform, along with an algorithm to evolve the learning of FLCs, especially aiming to the development of fuzzy controllers for mobile robot navigation. The structure has been proven on a Kephera robot. The conceptual aspects that sustain the work include topics such as Artificial Intelligence (AI), control advanced techniques, sensorial systems and mechatronics. Topics related with the control and automatic navigation of robotic systems especially with learning are approached, based on the Fuzzy Logic theory and evolutionary computing. We can say that our structure corresponds basically to a Classifier System, with appropriate modifications for the objective of generating controllers for mobile robot trajectories. The more stress is made on genetic profile than in the characteristics of the individuals and on the other, the strategy of distribution of the reinforcement is emphasized, fundamental aspects on which the work seeks to contribute.
منابع مشابه
Evolutionary Learning of Fuzzy Rules: Competition and Cooperation
We discuss the problem of learning fuzzy rules using Evolutionary Learning techniques, such as Genetic Algorithms and Learning Classifier Systems. We present ELF, a system able to evolve a population of fuzzy rules to obtain a sub-optimal Fuzzy Logic Controller. ELF tackles some of the problems typical of the Evolutionary Learning approach: competition and cooperation between fuzzy rules, evolu...
متن کاملA hybridization of evolutionary fuzzy systems and ant Colony optimization for intrusion detection
A hybrid approach for intrusion detection in computer networks is presented in this paper. The proposed approach combines an evolutionary-based fuzzy system with an Ant Colony Optimization procedure to generate high-quality fuzzy-classification rules. We applied our hybrid learning approach to network security and validated it using the DARPA KDD-Cup99 benchmark data set. The results indicate t...
متن کاملA NEURO-FUZZY GRAPHIC OBJECT CLASSIFIER WITH MODIFIED DISTANCE MEASURE ESTIMATOR
The paper analyses issues leading to errors in graphic object classifiers. Thedistance measures suggested in literature and used as a basis in traditional, fuzzy, andNeuro-Fuzzy classifiers are found to be not suitable for classification of non-stylized orfuzzy objects in which the features of classes are much more difficult to recognize becauseof significant uncertainties in their location and...
متن کامل"Michigan" and "Pittsburgh" Fuzzy Classifier Systems for Learning Mobile Robot Control Rules: An Experimental Comparison
We extend our previous work on the artificial evolution of Fuzzy Classifier Systems as reactive controllers for mobile robots, to encompass more versatile genotypic representations and more powerful genetic operators. The results are an improvement o our earlier work; in general, better controllers are evolved in fewer generations. However, the more global evolutionary characteristics of the Pi...
متن کاملModified CLPSO-based fuzzy classification System: Color Image Segmentation
Fuzzy segmentation is an effective way of segmenting out objects in images containing both random noise and varying illumination. In this paper, a modified method based on the Comprehensive Learning Particle Swarm Optimization (CLPSO) is proposed for pixel classification in HSI color space by selecting a fuzzy classification system with minimum number of fuzzy rules and minimum number of incorr...
متن کامل